噴墨細(xì)胞打印是基于普通噴墨打印機(jī)的打印原理,利用熱氣泡或壓電體積變化擠壓墨盒中的細(xì)胞墨水,離散地產(chǎn)生并噴射含有細(xì)胞的細(xì)胞墨水液滴[1]。噴墨打印機(jī)的噴嘴直徑只有幾十微米,可以進(jìn)行高精度的細(xì)胞打印。然而,由于噴嘴直徑相對(duì)較小,噴墨細(xì)胞打印很難離散地打印高粘度的細(xì)胞墨水,這使得該技術(shù)很難直接打印3D生物實(shí)體模型。此外,熱氣泡的產(chǎn)生和壓電體的變形肯定會(huì)損壞電池,需要更好地控制打印工藝參數(shù)。代表性的研究機(jī)構(gòu)包括德克薩斯大學(xué)Boland教授的研究組。
微擠壓細(xì)胞三維打印技術(shù)利用機(jī)械力或氣壓通過微噴嘴直接擠壓生物材料和細(xì)胞,構(gòu)建三維生物結(jié)構(gòu)[2,3]。由于常用的微擠壓細(xì)胞打印機(jī)的噴嘴直徑在數(shù)百微米,打印精度一般,但擠壓工藝可以打印高粘彈性的生物墨水,易于實(shí)現(xiàn)3D生物實(shí)體的構(gòu)建。此外,該技術(shù)在犧牲精度的同時(shí)增加了打印的每個(gè)離散單元的尺寸,從而間接提高了打印效率和細(xì)胞存活率。代表性研究機(jī)構(gòu)包括清華大學(xué)生物制造中心孫偉教授研究組和哈佛大學(xué)Jennifer Lewis教授研究組。
激光直寫細(xì)胞打印技術(shù)是指利用光壓力控制細(xì)胞排列成高精度的空間結(jié)構(gòu)。其精度可以達(dá)到單個(gè)細(xì)胞的數(shù)量級(jí)。然而,精度的提高也導(dǎo)致了成形效率的顯著下降,而且該工藝也難以打印粘度較高的生物材料,降低了其打印三維生物結(jié)構(gòu)的能力[4]。代表性的研究機(jī)構(gòu)是明尼蘇達(dá)大學(xué)David Odde教授的研究小組。
三維光刻細(xì)胞三維打印技術(shù)通過激光或紫外光在空間的掃描運(yùn)動(dòng),實(shí)現(xiàn)含有光刻膠的細(xì)胞的三維凝固成型,創(chuàng)造出預(yù)先設(shè)計(jì)的三維生物結(jié)構(gòu)[5] 。盡管這項(xiàng)技術(shù)靈活性很高,但其成型效率卻并不如預(yù)期。有研究人員不再利用細(xì)小的激光光斑掃描三維固化成型,而是利用投影儀的原理進(jìn)行曲面投影,各層同時(shí)固化成型。根據(jù)投影機(jī)類型,制程可分為L(zhǎng)CD投影機(jī)式和DMD投影機(jī)式。
兩者的本質(zhì)區(qū)別在于,液晶投影機(jī)首先將光源分解為3種單色光,然后分別通過三片液晶面板控制這三種單色光的亮度,合成所需的光線和圖案。 ,而DMD僅使用可以反射光源的數(shù)字陣列顯微鏡來實(shí)現(xiàn)。該工藝的光敏水凝膠是預(yù)先儲(chǔ)存在成型室中的,造成材料浪費(fèi),且難以制備多種細(xì)胞異質(zhì)結(jié)構(gòu),且大多數(shù)光敏水凝膠具有不同程度的毒性,使得細(xì)胞存活率較低。 。代表性的研究機(jī)構(gòu)是加州大學(xué)圣地亞哥分校陳紹辰課題組。
聲驅(qū)動(dòng)細(xì)胞打印技術(shù)是一種利用聲波振動(dòng)產(chǎn)生液滴噴射的方法,其精度可低至10μm左右。然而,這一過程也是一種液滴噴射方法,很難噴射高粘度的生物材料,使得打印三維生物結(jié)構(gòu)的能力受到限制[6]。代表性研究機(jī)構(gòu)包括美國斯坦福大學(xué)Demirci教授研究組。
綜上所述,各種細(xì)胞打印方法各有千秋,但對(duì)于三維復(fù)雜異質(zhì)生物結(jié)構(gòu),微擠壓細(xì)胞三維打印技術(shù)更適合,更容易構(gòu)建多細(xì)胞三維模型。效率更高,細(xì)胞存活率高,打印精度(100微米)也能滿足一般科學(xué)研究的需要。因此,目前市場(chǎng)上主流的細(xì)胞3D打印機(jī)大多基于該技術(shù)。代表企業(yè)有德國Envision TEC、瑞士RegenHu、中國SunP Biotech、Genova等。